Nasal absorption of insulin: enhancement by hydrophobic bile salts.
نویسندگان
چکیده
We demonstrate that therapeutically useful amounts of insulin are absorbed by the nasal mucosa of human beings when administered as a nasal spray with the common bile salts. By employing a series of bile salts with subtle differences in the number, position, and orientation of their nuclear hydroxyl functions and alterations in side chain conjugation, we show that adjuvant potency for nasal insulin absorption correlates positively with increasing hydrophobicity of the bile salts' steroid nucleus. As inferred from studies employing various concentrations of unconjugated deoxycholate and a constant dose of insulin, insulin absorption begins at the aqueous critical micellar concentration of the bile salt and becomes maximal when micelle formation is well established. These and other data are consistent with the complementary hypotheses that bile salts act as absorption adjuvants by producing high juxtamembrane concentrations of insulin monomers via solubilization in mixed bile salt micelles and forming reverse micelles within nasal membranes, through which insulin monomers can diffuse through polar channels from the nares into the blood stream.
منابع مشابه
Absorption-Enhancing Effects of Bile Salts.
Bile salts are ionic amphiphilic compounds with a steroid skeleton. Among the most important physiological properties of bile salts are lipid transport by solubilization and transport of some drugs through hydrophobic barriers. Bile salts have been extensively studied to enhance transepithelial permeability for different marker molecules and drugs. They readily agglomerate at concentrations abo...
متن کاملEnhancing Effect of Bile Salts on Gastrointestinal Absorption of Insulin
Purpose: To investigate the effect of co-administration of two absorption enhancing bile salts, sodium glycocholate (NaGc) and sodium salicylate (NaSal), on insulin absorption via intestinal targeted delivery system. Methods: Insulin (10 IU/kg), associated with and without absorption enhancers (5 % enhancer solution of NaGc or NaSal), was administered to the duodenum, jejunum, and ileum part of...
متن کاملCholesterol absorption by the gall bladder.
Model and real biles were used to investigate factors influencing cholesterol and dextran (70,000 molecular weight) absorption by the gall bladder. Cholesterol absorption was proportional to cholesterol concentration when real bile was used, but model biles showed maximal absorption at cholesterol saturation. Reduction of temperature reduced cholesterol absorption and serosal secretion, but had...
متن کاملFeeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse.
We explored the influence of the hydrophilic-hydrophobic balance of a series of natural bile acids on cholesterol absorption in the mouse. Male C57L/J mice were fed standard chow or chow supplemented with 0.5% cholic; chenodeoxycholic; deoxycholic; dehydrocholic; hyocholic; hyodeoxycholic; alpha-, beta-, or omega-muricholic; ursocholic; or ursodeoxycholic acids for 7 days. Biliary bile salts we...
متن کاملBile salt receptor complex activates a pathogenic type III secretion system
Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered that Vibrio parahaemolyticus VtrC, along with VtrA and VtrB, are required for activating the virulence typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 82 21 شماره
صفحات -
تاریخ انتشار 1985